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A B S T R A C T

Attributes are widely used in different vision tasks. However, existing attribute resources are quite limited
and most of them are not in large scale. Current attribute annotation process is generally done by human,
which is expensive and time-consuming. In this paper, we propose a novel framework to perform effec-
tive attribute annotations. Based on the common knowledge that attributes can be shared among different
classes, we leverage the benefits of transfer learning and active learning together to transfer knowledge
from some existing small attribute databases to large-scale target databases. In order to learn more robust
attribute models, attribute relationships are incorporated to assist the learning process. Using the proposed
framework, we conduct extensive experiments on two large-scale image databases, i.e. ImageNet and SUN
Attribute, where high quality automatic attribute annotations are obtained.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Traditional machine learning methods for object recognition
require large numbers of training samples to optimize the parameters
of an image classifier. There have been continued efforts in collecting
large image corpora with a broader coverage of object categories [1],
thereby enabling image classification with many classes. While anno-
tating more images of specific categories will make contributions to
more accurate classifiers, creating high quality labeled images in large
scales is challenging, expensive and time-consuming. Moreover, as
images of new categories appear, the annotations should be revised
and the classifiers should be re-trained, which wastes much time.
Therefore, general models are essential to tackle such problems.

Attributes, which can be shared among different classes, are
enjoying increasing popularity recently. It is common knowledge
that humans learn new objects from their characteristics which can
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be described by attributes. Recent research explores a variety of
applications for attributes, including object recognition [2-4], image
retrieval [5-7], scene understanding [8] and action recognition [9,10].
While attributes play an important role in various vision tasks, image
databases with attribute annotations are very scarce and most exist-
ing databases are not in large scale. It is thus essential to annotate
attributes for more images. However, current attribute annotation
is usually done by human labor, which is a heavy burden when the
database is in large scale.

In this paper, we focus on the problem of how to perform effec-
tive attribute annotation. The motivations for our approach are in
three aspects. First, attributes can be shared among different cate-
gories [2,3], thus some existing attribute databases can be leveraged
to make knowledge transfer, which will save much human labor for
annotation. Owing to the fact that the source and target databases
may contain totally different categories and the attributes are domain
specific, domain shift problem will be incurred [11], so transfer learn-
ing methods are needed to tackle such problems. Second, not all
samples in the target database are equally important to create dis-
criminative attribute classifiers. In order to save the most of human
labor, active learning approaches can be utilized to select the most
informative ones to annotate. Third, it is well known that attribute
relationships are helpful for the attribute prediction task. For example,
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open area and closed area cannot exist in one scene simultaneously.
In order to utilize such relationships to improve the attribute models,
we incorporate the attribute relationships into the attribute learning
process.

In order to solve the problems in the large-scale attribute
annotation task, we propose a framework to learn all attributes simul-
taneously. The general framework of our approach contains three
parts, as is shown in Fig. 1. Transfer learning is utilized to borrow
prior knowledge from existing source datasets. Active learning is
used to annotate the most informative target samples to update the
attribute models borrowed from source datasets, aiming for reducing
the number of samples to annotate. Moreover, attribute relationships
are incorporated to boost the learning process. By unifying trans-
fer learning and active learning in our framework, the workload of
human annotation task on the target database can be reduced by a
large margin.

The main contributions of this paper lie in three aspects. First,
the benefits of transfer learning and active learning are combined
aiming to reduce the human labor for the attribute annotation task,
where transfer learning borrows knowledge from existing sources
and active learning selects the most informative samples to annotate.
Both of them reduce the workload of annotation. Second, we incor-
porate the attribute correlations into the attribute learning process
and thus more accurate attribute models can be obtained. Third, we
explore the relationships of class-attribute, class-class and attribute-
attribute by statistical approaches using the large numbers of labeled
samples.

2. Related work

In this section, we give a brief overview of previous works which
are closely related to our work. In Section 2.1, we review the related
works on attributes. In Sections 2.2 and 2.3, we will introduce some
relevant transfer learning methods and active learning methods
respectively.

2.1. Attributes

Attributes are general descriptions of images and have drawn
much attention in different computer vision tasks such as image
classification [2,3,8,9], image retrieval [5,12] and image captioning
[13,14]. As mid-level representations, attributes are widely studied
in the past few years [15-23]. Traditional approaches usually define

attributes beforehand by human, which needs expert knowledge to
classify different categories. Recently, [24] proposes an approach to
automatically discover discriminative attributes from large text cor-
pus and obtain the class-attribute associations. With the popularity
of deep learning in recent years, some works applied deep models to
attribute detection [25-29]. All these works need a large number of
attribute annotations on images to learn good attribute models. How-
ever, the scale of existing attribute databases is limited and almost all
existing attribute annotations are performed by human labor which
is a huge engineering job. Lampert et al. [2] create an animal database
for object recognition which contains 50 classes of animals with a total
of 30,475 images. There are 85 attributes annotated for the database,
but the attribute annotation is based on classes. It is well known that
there are large variations within each category and the class-based
annotation could not cover the variations of each individual sam-
ple. In order to make more efficient scene recognition, Patterson and
Hays [8] use ATM workers to annotate 102 attributes for more than
700 scene categories, with a total number of 14,000 images. Based
on the novel idea that attributes can build up relationships among
different objects, Russakovsky and Fei-Fei [30] annotate attributes
on ImageNet [1], where 25 attributes for about 400 classes with 25
images per class were manually annotated. The annotation task will
cost much time and money with the increasing number of attributes
and images. Recently [31] proposes to use the class-attribute priors to
reduce the attribute annotation task, where a few labeled samples are
needed beforehand. While attributes are important in different com-
puter vision tasks, there are few works focus on the basic attribute
annotation task and the whole process is done by human. In order to
make more efficient attribute annotations, we propose the problem
of how to utilize existing attribute databases to annotate attributes
for other large-scale image databases.

2.2. Transfer learning

Transferring knowledge among different object classes is an
important topic due to its potential to enable efficient learning of
object models from a small number of training examples [32]. It pro-
vides the basis for scalability to a large number of classes. The basic
idea lying in this method is to leverage previously learned object cat-
egories when training a new category in which few labeled images
are available [33]. Other work trains new category models with no
labeled samples in the beginning [34], where class relationships are

Fig. 1. The general objective of our work. The red circles in the source database represent classes with attribute annotations and the blue ones in the target database represent
classes without attribute annotations. Transfer learning brings knowledge of attributes from the source database to the target one and active learning is used to iteratively select
informative samples for human annotation and then feed these online labeled samples to update attribute models. Moreover, attribute relationships are taken into consideration
to improve the attribute prediction results. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



H. Jiang et al. / Image and Vision Computing 78 (2018) 1–13 3

utilized to form zero-shot new category models from existing cat-
egories. In contrast, we directly utilize the transferring property of
attributes. For the attributes may be different between new cate-
gories and existing categories, domain adaptation methods should
be utilized to deal with such gaps [35-37]. While recent researches
have utilized the adaption method to tackle the real problems in
attributes [27,38-40], most of the previous works consider attributes
within the training classes where the domain gap is small. In this
paper, we study more general settings where the source and target
database may have totally different classes. Our framework has some
difference with traditional transfer learning and domain adaptation
methods. Traditional transfer learning deals with different source
and target classes and domain adaptation deals with the same source
and target class but in different domains. Our approach deals with
different source and target classes, so it relates to transfer learning
approach. However, attributes can be shared among different classes
and the attribute classifiers for the source and target datasets are
the same. From the view of attributes, it also relates to the domain
adaptation approach.

2.3. Active learning

Active learning deals with the problem of finding the most cru-
cial data in a set of unlabeled examples in order to get the maximum
information gain [41]. It has yielded a variety of heuristics based on
the variant of prediction [42], version space of SVMs [43], disagree-
ment on classifiers [44] and expected informativeness [45]. Recently
active learning approaches have also been applied to attributes to
tackle some practical problems to reduce human labor [6,7,46-48].
However, most of the existing method deals with each attribute inde-
pendently, which ignores the attribute correlations. It is well known
that the relationships among attributes can improve the attribute pre-
diction task [15,18-20]. In order to achieve more accurate attribute
models, we learn multiple attributes simultaneously, where efficient
classifier updating method is designed to perform our task.

2.4. Difference with similar works

The most related works to ours are [30] and [31]. [30] anno-
tates 25 attributes for about 10,000 images in ImageNet by human
and uses traditional supervised learning approach to learn attribute
classifiers. It focuses on the attribute learning process and all the
attributes are annotated by human. In contrast, we focus on attribute
annotation itself and combine active learning and transfer learning
to do incremental attribute learning, where only small numbers of
samples need to be annotated by human. [31] is mainly focusing on
human labeling. It aims to find discriminative attributes to classify
different objects where the class-attribute relationship is utilized as
a prior. The statistical results are used as a guideline for human anno-
tation and no learning process is performed. In contrast, we focus
on the transferring property of attributes and use the incrementally
updated attribute models to guide human annotation.

3. Approach

We tackle the problem of utilizing some existing attribute
databases to annotate attributes for a target large-scale database,
where transfer learning and active learning approaches are unified to
perform such task. The technical process of our approach is shown in
Fig. 2. The target database for attribute annotation is divided into two
parts: one is labeled offline by human, which serves as validation
set to evaluate the performance of attribute models, and the other
forms the active set for online attribute transfer. We first train ini-
tial attribute models (i.e. classifiers) from the existing small labeled
source database. These are the source models, in transfer learning

term. Then we evaluate the performance of such models on the val-
idation set. If they are good enough (performance does not improve
or reaches a threshold defined beforehand), the learning process will
be stopped and the current models are used to predict the attributes
of the unlabeled images in the active set, i.e. the AP set in Fig. 2.
Otherwise, a round of active learning process will be triggered to
select the most informative samples from the active set for human to
annotate, i.e. the AH set in Fig. 2. Then, they are added to the labeled
data pool to update the attribute classifiers, where the attribute
relationships are taken into consideration and they will be updated
at the same time. The performance of the updated attribute models
is again evaluated by the validation set to decide whether to stop or
go to a new round of active learning process.

3.1. Problem formulation

As mentioned above, we use active learning approaches to iter-
atively adapt the attribute models to the target database. As the
process of active learning goes on, the number of labeled samples
will become larger and larger, which makes it inefficient to retrain
attribute models, so an online method is needed to speed up the
updating speed.

Notations. Suppose we have N training samples
X = [x1, x2, . . . , xN] ∈ R

d×N in the tth iteration and their correspond-
ing attribute labels are denoted as A = [a1, . . . , aN] ∈ R

T×N, where
d and T denote the dimension of the feature vector and the number
of attributes respectively. The goal is to learn T attribute classifiers,
which are represented by W = [w1, w2, . . . , wT] ∈ R

d×T. We denote
Wpre ∈ R

d×T as the attribute models of previous round.
Before the active learning process, some prior knowledge can

be obtained from the source databases. Specifically, we train initial
attribute models by the labeled images in the source database and
it formulates the initial W1. Then such attribute knowledge can be
transferred to the target database, where informative target samples
are selected to update the existing attribute models. The objective
is to learn attribute classifiers which can not only perform well on
the new target samples but also keep the good property of original
models. This can be formulated as

f (W) = arg min
W

1
N

∥∥∥A − WT X
∥∥∥2

F
+ b

∥∥W − Wpre
∥∥2

F (1)

The first term minimizes the classification error to guarantee that the
updated attribute models to perform well on the new target samples,
where L2 loss is utilized to get the closed-form solution, which can
be very quick. The second term restricts the updated models to be
similar to the original models, which aims to keep the good property
of original models. As the number of labeled target samples in each
iteration is small, the second term plays an important role to prevent
the models from changing by a large margin.

It is common knowledge that attributes often correlated with each
other. For example, if a scene picture contains trees, it has a large
probability to be taken outdoor. Incorporating such relationships will
benefit the attribute learning process. An intuitive way to obtain the
attribute relationships is using statistical approaches to make statis-
tics on a large number of labeled samples. However, it is not suitable
for our task. Inspired by [49] and [19] where the class relationships
are represented by the model correlations, we use the attribute clas-
sifiers to model the relationship between the attributes. Thus the
attribute relationships can be updated in real-time without having to
obtain the attribute labels of all the samples to make statistics. The
updated attribute models should keep the attribute relationships so
that these models can be updated in a stable way. After incorporating
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Fig. 2. The technical framework of our approach. The source database is an existing resource which has attribute annotations. The target one is used for annotation. It is divided
into two parts: one (Validation Set) is annotated beforehand to test the performance of attribute classifiers and the other serves as Active Set from which the informative samples
are selected to update the attribute classifiers.

the attribute relationships into the active adaption framework, the
objective can be formulated as

f (W , C) = arg min
W ,C

1
N

∥∥∥A − WT X
∥∥∥2

F

+ a tr(WC−1WT ) + b
∥∥W − Wpre

∥∥2
F

s.t. C � 0, tr(C) = 1. (2)

where C ∈ R
T×T is the column covariance matrix of the weight

matrix W, which reflects the attribute-attribute relationships. The
first constraint C � 0 restricts that C is positive semi-definite because
it denotes a task covariance matrix. The second constraint tr(C) = 1
serves to restrict the complexity of C.

Fig. 3. Procedure for image selection and annotation. For each attribute (each row),
the most uncertain samples are selected for human to annotate (green sample-
attribute pairs) so each sample is partially labeled (each column). Then the missing
attributes (blue ones) are filled with the attributes predicted by previous models. (For
interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

3.2. Optimization

As the variables in Eq. (2) are jointly convex, thus the problem can
be solved by the alternating optimization method.

(1) Fix W, update C.
We can initialize W by Wpre, then the sub-problem can be
converted to

C∗ = arg min
C

tr(WC−1WT )

s.t. C � 0, tr(C) = 1. (3)

As is proposed by [49], the optimal C that minimizes Eq. (3)
has the following close-form solution:

C∗ =

(
WT W

) 1
2

tr
((

WT W
) 1

2

) (4)

(2) Fix C, update W.
The sub-problem can be formulated as

W∗ = arg min
W

1
N

∥∥∥A − WT X
∥∥∥2

F

+ a tr
(

WC−1WT
)

+ b
∥∥W − Wpre

∥∥2
F (5)

Table 1
Attributes annotated for 1000 categories of ImageNet.

Type Attributes

Color Black, blue, brown, gray, green, orange, pink,
red, purple, white, yellow, multicolor

Texture Spot, stripe
Shape Square, rounded, cylinder, sharp
Material Metal, wood, furry
Structure Tail, horn, biped, quadruped
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Fig. 4. Performance of the proposed framework on ImageNet. ‘TB’ shows the
performance of initial attribute models on the target validation set before transfer.
‘TA’ shows the performance on the target validation set after attribute transfer. ‘S’
shows the performance of initial attribute models on the source validation dataset.

This is a convex problem which has closed-form solution. We
can obtain its gradient as follows:

∂ f (W , C)
∂W

=
2
N

(
XXT W − XAT

)

+ aW
(

C−1 +
(

C−1
)T

)
+ 2b (W − Wpre) (6)

We denote C−1 + (C−1)T by R. By forcing ∂ f (W ,C)
∂W to be 0, we

obtain that

vec(W∗) =
(

I ⊗
(

2
N

XXT
)

+ (aR + 2bI)T ⊗ I
)−1

∗ vec
(

2
N

XAT + 2bWpre

)
(7)

where ⊗ represents Kronecker product and vec represents the vec
operator. I represents the identity matrix. It is obvious that when
the feature dimension and attribute numbers are large, the computa-
tion and memory cost will be extremely huge for Kronecker product
operation. For example, the computation cost of Eq. (7) is O(d6) and
the memory cost is O(d4), where d is the dimension of features. To
solve such problem, we propose an algorithm based on Block Coordi-
nate Descent (BCD) principles. In this approach, we introduce a slack
variable Wr and force it to be similar to W, then the original problem
may be solved by two alternating processes, focusing on a new cost
function and the regularization term respectively. That is, we first
convert the original problem into

g(W , Wr) = arg min
W ,Wr

1
N

∥∥∥A − WT X
∥∥∥2

F
+ a tr

(
WrC−1WT

r

)

+ b
∥∥W − Wpre

∥∥2
F + c

∥∥W − Wr
∥∥2

F (8)

in which the norm
∥∥W − Wr

∥∥2
F enforces a similar solution of W and

Wr. First, we initialize W with Wpre. Then we obtain the attribute

models by iteratively updating Wr and W in the following two
problems:

Optimization of Wr: For fixed W, the optimization of Wr can be
solved by

W∗
r = arg min

Wr
a Tr

(
WrC−1WT

r

)
+ c

∥∥W − Wr
∥∥2

F (9)

and there is a closed-form solution for Wr

W∗
r = 2cW

(
a

((
C−1

)T
+ C−1

)
+ 2cI

)−1

(10)

Optimization of W: For fixed Wr, the optimal attribute models W
can be obtained via solving

W∗ = arg min
W

1
N

∥∥∥A − WT X
∥∥∥2

F

+ b
∥∥W − Wpre

∥∥2
F + c

∥∥W − Wr
∥∥2

F (11)

This optimization problem is convex and has closed-form
solution

W∗ =
(

1
N

XXT + bI + cI
)−1 (

1
N

XAT + bWpre + cWr

)
(12)

By transforming Eqs. (7) to (8), the computation and memory
costs can be reduced to O(d3) and O(d2) respectively.

3.3. Image selection strategy

In this paper, we consider a pool-based active learning which
appears to be the most popular scenario for applied research in active
learning. Existing active learning approaches are mainly based on
uncertainty sampling and expected loss reduction. Due to the fact
that the computation of entropy reduction will cost much time in a
large-scale image database, we adopt the more simple uncertainty
sampling method. In uncertainty sampling approaches, the most
informative samples are considered to locate near the current clas-
sifier hyper planes, so using these annotated samples to update the
attribute models will gradually improve the models. However, tradi-
tional uncertainty sampling methods are mainly designed for single
attribute, while the proposed framework deals with all attributes
simultaneously. An intuitive approach is to combine the uncertainty
of all attributes and select the samples which have largest overall
uncertainty and annotate all attributes of these selected samples.
However, this approach may select samples not informative for each
attribute although they have largest overall uncertainty.

In order to select informative samples for each attribute, we mod-
ify the traditional uncertainty sampling method to fit for the task
of simultaneously updating all attribute classifiers. Specifically, we
select the most informative attribute-sample pairs, as is shown in

Table 2
The performance of initial attribute classifiers on the source and target databases on SUN Attribute. ‘S’ represents the performance of original models on the source database. ‘TB’
shows the performance of initial attribute models on the target validation set before transfer. ‘TA’ shows the performance on the target validation set after attribute transfer.

Attribute S TB TA Attribute S TB TA

Rock/stone 0.94 0.87 0.89 Direct sun/sunny 0.85 0.81 0.81
Still water 0.94 0.83 0.86 Natural light 0.88 0.85 0.86
Warm 0.72 0.68 0.71 Far-away horizon 0.96 0.94 0.95
Shrubbery 0.92 0.92 0.92 Clouds 0.91 0.88 0.89
Ocean 0.97 0.94 0.95 Open area 0.94 0.92 0.93
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Metal 

Source
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Target 

Fig. 5. Examples of source images and failed target images on ‘cylinder’ and ‘metal’ for ImageNet.

Fig. 3. Specifically, for each attribute Ai, we select the most informa-
tive samples for human to annotate, as is shown by the green block
of Fig. 3 in each row. For simplicity, the distance to the classifica-
tion hyperplane is exploited as the uncertainty measure and it can be
computed by

Dm
i = |Wm ∗ xi − sm|, (13)

where Dm
i denotes the distance of sample xi to the classification

hyperplane for attribute m and sm is the classification threshold.
Samples with smallest Dm

i are selected for human to annotate.
This process is the same as that in traditional uncertainty sam-
pling approaches for single attribute [6,7,46,47]. In this way, we
obtain some partially labeled samples, i.e. samples with one or few
attributes annotated (each column of Fig. 3), and we call these
annotations attribute-sample pair annotations. However, in order
to update all the attribute models simultaneously, our framework
needs to know all the attributes of each sample, so we fill the missing
attribute labels (blue blocks in Fig. 3) of the selected samples with
the attributes predicted by the current attribute classifiers. Thus we
can obtain all the attributes of the selected samples. Then, we use
these samples to update the attribute classifiers. There are two bene-
fits for the proposed method. First, the most informative samples for
each attribute are obtained and they are annotated by human (green
blocks in Fig. 3). These accurate annotations are helpful to improve
the current attribute models. Second, we use the attributes predicted
by previous models to fill up the missing attribute labels (blue blocks
in Fig. 3). These predicted attributes are partial representations of
previous models and using these attributes to update the models
will keep the relatively good property of previously learned models,
which is complementary to the third term of Eq. (2).

4. Experiments

4.1. Experiment settings

We perform experiments on two large-scale image datasets: Ima-
geNet [1] and SUN Attribute Database [8]. ImageNet is a benchmark
database for large-scale visual recognition which is organized by the

hierarchical structure. We choose the 1000 categories which are used
for the classification task of the ImageNet large-scale visual recog-
nition challenge [50] to perform our experiment, where 50 images
for each class are selected. To perform the proposed framework, we
randomly select 100 categories to form the source image database
and the rest 900 categories are used as the target database. Then
we divide the target database into two parts, i.e., 10% of the images
in each class are selected to serve as validation set and the oth-
ers form the active set from which the informative samples are
selected. We extract 4096-dimension AlexNet features of all images
by Caffe [51] with the released model pre-trained on ImageNet,
where no additional pre-training is done. It is worth noting that
the source database and the target database contain totally differ-
ent categories, which makes the gap within the attributes larger and
be more difficult than traditional transfer learning problem. In our
experiment, we set the parameters in Eq. (8) as a = 0.1,b = 10,
and c = 1. SUN Attribute Dataset is built based on SUN categorical
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Fig. 6. Improving performance of 5 attribute models in ImageNet during 100
iterations.
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Fig. 8. The performance of different comparing methods by mean Area Under Curve (mAUC): S1 (transfer + active + relation) is the proposed method; S2 (transfer + active)
removes the relationship constraint (second term) in the proposed framework; S3 (transfer + random + relation) replaces the active selection by random selection; and S4
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database [52] for high-level scene understanding and fine-grained
scene recognition. It spans more than 700 categories and 14,000
images with 102 attributes annotations. In our experiment, 100
categories are picked out as the source database and the others are
used as the target database to annotate. In our experiment, we set the
parameters in Eq. (8) as a = 0.1,b = 10, and c = 10. We define
the stopping mAUC as 0.96, which is a little higher than that on the
source validation set. However, it mostly cannot be reached. We also
define the maximum iterations to be 100 to control the learning pro-
cess. In the real applications, the updating process can be stopped
when the performance has little changes in successive iterations.

4.2. Attribute annotation

It is well known that large numbers of attributes are needed to
define an object for the classification task. Since our purpose is focus-
ing on the attribute annotation task, which is general to all attributes,
we define 25 common attributes by reference to [30], which include
color, texture, shape, material and structure, to demonstrate the

effectiveness of our framework. In order to perform our experiment
automatically, we annotate 25 attributes for the images in ImageNet
beforehand, with a total number of 50,000 images from the 1000 cat-
egories used in the classification task1. Table 1 shows the attributes
annotated in our work. There are 19 attributes in common with [30].
We removed the attributes which are difficult to annotate or can-
not be seen by appearance, such as rough and vegetation, and replace
them with some common visual attributes.

We follow the annotation strategy of [30], where each image is
annotated by three people for each attribute. Specifically, we hire
25 college students to annotate the images for three rounds. In each
round, we randomly assign an attribute to one student with guaran-
tee that each student annotates different attributes in three rounds.
In this way, each image is annotated three times for one attribute
by different people. Given an image, annotators are required to

1 The annotation will be released at http://vipl.ict.ac.cn/database.php.

http://vipl.ict.ac.cn/database.php
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Fig. 9. Attribute relationships learned on SUN Attribute.

decide whether a specific attribute exists or not. The final results are
produced by a voting strategy.

In order to check the annotation quality, we select 50 positive
images and 50 negative images for each attribute which are used to
checktheannotationresults.Themeanaccuracyofallattributes is0.92

andtheaccuracyof19attributesexceeds0.9.Theattributesdifficultfor
annotation include brown, gray, orange, purple, spot, and sharp. Some
of these attributes may be difficult to annotate due to the outer factors.
For example, it is difficult to decide whether an image contains gray
or not in low light conditions and the variation of sharp is very large.

Fig. 10. The learning process of furry in the active learning rounds on ImageNet. ‘Error’ in the validation set denotes images which are wrongly predicted by the original attribute
model. The images in the modification frame are the images correctly predicted after the model updating by the selected samples in the active set.
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Fig. 11. Attribute retrieval results on AP for ImageNet. Images with green border (left 3 columns) are positive images with highest confidence and images in red border (right 3
columns) are negative images with highest confidence. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

4.3. Transfer property of attributes

Although it is well known that attributes can be shared among
categories, few works give quantitative analysis of such property. In
this part, we explore the transfer property of attributes. Specifically,
we train initial attribute models on the source database and directly
measure their performance on the target databases, where leave-one-
out scheme is used to test the performance on the source database
and the target validation set is used to measure the performance
on the target database. For the source and target databases contain
totally different categories, the difference in the performance is a
good measure for the transfer property of attributes. Considering the
imbalance of positive and negative samples, we use the Area Under
Curve (AUC) to report the performance. In the initial process, we
leave out a source validation set to test the original attribute models,
where the performance will indicate the difficulty of learning each
attribute. Fig. 4 and Table 2 show the performance on ImageNet and
SUN Attribute. We can figure out that after active knowledge transfer,
the performance improves a lot and nearly reaches the results on the
source validation set. For ImageNet, the mean AUC before attribute
transfer is 0.89 and after attribute transfer, the mean AUC improves
to 0.95. It can be seen that some attribute classifiers trained on the
source database can also have relatively good performance on the
target database, such as furry, which indicates that attributes can be
shared among different categories. However, the performance of some
attribute models degrades a lot for the target database, such as cylinder
and metal. This may be caused by the large variations between the two
databases. Some examples of source images and failed target images
are shown in Fig. 5. In such cases, directly using the original attribute
models obtained from the source images to predict the attributes of
the target images is not a satisfactory choice, where domain shift
problems need to be tackled to adapt to the target database.

4.4. Effectiveness of the proposed framework

To deal with the gap between the source and target database,
we perform experiments on ImageNet. Specifically, we use active
learning method to select the most informative target images for
annotation and use these samples to update the original attribute
models trained on the source images. In our experiment, 50 images

for each attribute are selected per iteration. The performance of 5
attributes is shown in Fig. 6. It can be inferred that the attribute mod-
els are improving as the learning process going on and after about 30
iterations, the improvement is small and the learning process can be
stopped. To evaluate the theoretical upper bound of performance, we
use all the active set (a total of 40,500 images) to train the attribute
models and the mAUC is 0.97. The performance of source attribute
model is 0.89 and we achieve 0.95. However, we only perform 50
iterations and labeled 50 ∗ 50 ∗ 25 attributes, while the upper-bound
models need to annotate 40, 500 ∗ 25 attributes.

To demonstrate the effectiveness of the proposed framework, we
compare our method with two approaches: active transfer learning
(ATL) [34] and adaptive SVM (A-SVM) [33]. [34] proposes a method
for zero-shot learning by reusing the past datasets. This work utilizes
class relationships to form the new category classifiers in the initial
process, while we perform attribute transfer directly. To make it suit-
able for our task, we modified the process of initializing the models,
where attribute models learned from the source dataset are directly
used. Then we perform the attribute prediction task using the mod-
els proposed by [34]. [33] uses traditional adaptive SVM (A-SVM)
approach to do the transfer learning task. In order to make it compa-
rable to our approach, we use traditional distance-based uncertainty
sampling approach to select images for each attribute and update

Fig. 12. The percentage of annotated attributes and images in ImageNet with the
iterations going on.
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Fig. 13. The number of positive images for each attribute on ImageNet.

each attribute model using A-SVM. The comparison results are shown
in Fig. 7. We can figure out that our model achieves higher perfor-
mance and our approach is more stable. The performance of [34]
drops in the first iteration. This may be caused by the learning pro-
cedure. It learns target classifier individually and adopts a weighted
summarization of source classifier and target classifier to form the
final classifier. The target classifiers learned by small numbers of
samples in the first iteration is not good enough, so the performance
may drop. While we use global optimization approach to learn the
final classifier, which is more stable. We can figure out that the per-
formance of our approach on SUN Attribute begins to drop after 60
iterations. We think that the models have reached their limits. To
demonstrate such suppose, we use all the active set samples to train
the attribute models and the mAUC is 0.909. Our model reaches
about 0.9 after 50 iterations, the performance may drop if we con-
tinue to update the models using uncertain samples. Moreover, our
approach takes about 15 min for 25 attributes on ImageNet in 100
iterations and [34] takes about 130 min, which demonstrates that
our approach is very fast.

To evaluate the effectiveness of each part, we compare the per-
formance of four different approaches in Fig. 8. S1 is the proposed
method; S2 removes the relationship constraint (second term) in
the proposed framework; S3 replaces the active selection by random
selection; S4 is the proposed framework without transfer (no source
models are utilized).

4.4.1. Effectiveness of active learning
By comparing the performance of S1 and S3, we can figure out

that active learning plays an important role in the improvement of
attribute models. Using the most informative samples to modify cur-
rent attribute models will gradually adapt the attribute models to the
target database. The performance decreases at the beginning of the
random selection, this may be caused by the less informative sam-
ples selected, which pull the classification hyperplane away from the
original models by a large margin.

4.4.2. Effectiveness of transfer learning
By comparing the performance of S1 and S4, we can see that with

the help of transfer learning, the attribute models have a good start in
the active learning process and converge with fewer labeled samples.
It can be inferred that with the help of transfer learning fewer labeled
images are needed to reach a suitable performance.

4.4.3. Effectiveness of the attribute relationship

By comparing the performance of S1 and S2, we can figure out
that modeling the relationships between attributes in the learn-
ing process will make some benefits. In order to have a concrete

impression of what these relationships are, we visualize the relation-
ships between 10 attributes in Fig. 9. Specifically, we normalize C by

Cij =
Cij

(Cii ∗ Cjj)
1
2

(14)

and choose ten attributes to show their relationships, which are
reflected by corresponding values in C. For C is not derived from
statistics but the correlations of attribute model, so its values only
show the relative strength of the relationships. From this figure, we
can discover relative strong relationship between natural light and
open area.

4.4.4. Active learning process
In order to explore the working manner of active learning, we

select some representative images in ImageNet to show the improv-
ing process of attribute models in Fig. 10. In each round, the most
informative images in the active set are selected to be annotated
and then be used to update the attribute models. It is interesting
that similar images which have been wrongly predicted in previous
rounds are modified. This demonstrates that it is possible to make
knowledge transfer by active learning techniques.

4.4.5. Attribute retrieval
To see what the attribute models have learned, we use these

attribute models to perform image retrieval on the AP set in

Fig. 14. Attribute descriptions of 3 classes on ImageNet, which are learned automati-
cally by statistics.
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Fig. 15. Class relations on ImageNet, which are learned by their attribute descriptions.

ImageNet. The results of five attributes are shown in Fig. 11. It is
obvious that the attribute models have definitely learned their cor-
responding semantic meanings. We have also made quantitative
analysis of our models on the target validation set. The attribute
retrieval mAP (mean average precision) on all the images is 0.90.

4.4.6. Statistical results
Fig. 12 shows the percentage of labeled attributes and images

with the iterations going on. It can be figured out that the number of
annotated attributes is growing stably and the percentage of anno-
tated images reaches nearly 1 in 100 iterations, which indicates the
diversity of annotated samples. We also make statistics about the
final annotation results by combining the human labeled attributes
(AH) and the attributes predicted by the final models (AP). Fig. 13
shows the number of positive images for each attribute. We can
figure out that some attributes are rare in the 1000 classes, such
as pink and purple. The average number of attributes per image is
1.50.

4.5. Further analysis

Attributes are helpful for describing objects. Meanwhile, they
can build up relations of different classes. To make a direct impres-
sion on whether the learned attribute models are good or not, we
make a qualitative analysis of the learned attribute models, where
knowledge discovery process is performed based on statistics.

The first kind of knowledge we want to explore is the associa-
tions between classes and attributes. Using these attribute prediction
results, we can learn these associations automatically by statistics.
Specifically, we make statistics for each class whether a specific
attribute exists or not based on the automatic annotation results.
Fig. 14 shows some class descriptions using ten attributes, where the
scores are normalized to [−1, 1]. Intuitively they are in accordance
with human knowledge, which reflects the attribute models learned
by our framework are relatively good.

The second knowledge we want to learn is the relationships
between classes. It is obvious that different classes can be con-
nected by the same attributes. Using the descriptions learned above,
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Fig. 16. Attribute relationships on SUN Attribute, which are learned by the attribute prediction results based on statistics.
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we can automatically decide the similarity between two classes by
their cosine distance. Fig. 15 shows the similarities between classes
learned by the class-attribute association. It can be figured out that
similar classes are grouped together and dissimilar classes have low
correlations. For example, in ImageNet, brambling is most similar
to snowbird and tiger is most similar to lion. The class relationships
shown in Fig. 15 automatically groups these categories into two
large parts, i.e. animal or non-animal. Moreover, within each large
part, several small parts are formed. We can use these attribute
descriptions to perform automatic clustering task.

The third knowledge we want to learn is the relationships
between attributes. Using the attribute prediction results, we can
learn the relationships between attributes based on the statistical
method. Specifically, we compute the conditional probability of one
attribute given another attribute and regard it as the relationships
between these two attributes. We average the symmetric terms to
form the final attribute relationships. Fig. 16 shows the attribute
relationships learned by statistics. It can be seen that the rela-
tive strengths of these relationships are mostly in accordance with
Fig. 9 that learned in our framework. For example, the relationship
between natural light and open area is strong.

4.6. Evaluations on time saving

In this part, we make statistics about the human labeling time.
It takes about 2 s to annotate one attribute for one image in the
annotation task. In our experiment, there are 40,000 images in the
target database. The proposed framework needs to annotate 4000
images as the validation set. It can be seen from Fig. 8 that the
proposed framework converges in about 50 iterations, with 2500
images for each attribute annotated. In total, we will reduce the
annotation task to about 1/6 of its original task. After 50 iterations
of active learning, the final mAUC obtained by our framework is 0.95
and the final accuracy is 0.97.

5. Conclusion

This paper proposes a framework for large-scale attribute
annotation, which leverages existing attribute databases to reduce
the human labor. The proposed framework combines the benefits of
transfer learning and active learning to reduce the workload in the
annotation task. Meanwhile, the attribute relationships are also uti-
lized to assist the learning process. In order to speed up the training
process, an online updating approach is designed. Extensive experi-
ments show the effectiveness of each part of the proposed framework.
Furthermore, we annotate a large-scale attribute database based on
ImageNet, which will be released to the public in the near future.
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